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INTRODUCTION 

THE SUBJECT matter related to phase change and typical of 
solidification or melting is of importance in many engineering 
applications. Over the years, a number of analytical and 
numerical approaches have been attempted for the simu- 
lation of phase change problems and a great deal of interest 
and research endeavors are in progress both in industry and 
the research community at large. 

The purpose of the present paper is to describe effective 
yet simplified representative enthalpy-based formulations 
following the initial developments due to the authors [I]. 
In particular, emphasis on the applicability to a class of 
isothermal phase change problems is demonstrated via 
analogous representations with only minor modifications. 
Although the original developments which we strongly advo- 
cate are robust and geared towards the general (isothermal 
and mushy) phase change problems [l], the present rep- 
resentations provide certain simplifications with some added 
advantages and restrict attention to a class of isothermal 
phase change problems. Attention is confined to fixed grid 
methods for the purposes of illustration. 

NUMERICAL MODELS 

For the numerical simulation of phase change problems, 
both finite difference methods and the finite element methods 
have been extensively used. Because of the inherent flexi- 
bility, effectiveness for modeling complex shapes, and the 
several other advantages, the paper concerns the finite 
element method. Employing finite elements for modeling: 
analysis of phase change problems, the class of methods, 
namely, apparent heat capacity methods, fictitious heat flow 
or source-based methods, and enthalpy-based methods seem 
to be the more prominent methods customarily advocated. 

The apparent heat capacity methods with temperature 
fields as the dependent variables have been traditionally used 
in conjunction with finite elements [2, 31 since the basic form 
of the equation for phase change is analogous to that of the 
classical heat conduction equation. However, to handle the 
Dirac-d-type behavior for the heat capacity in phase change 
situations. an enthalpy function is introduced. And various 
approximations appear in literature for evaluating the effec- 
tive heat capacity, pC, of which the more commonly advo- 
cated methods are summarized in ref. [l] and references 
thereof. In conjunction with all of these approximations, a 
fnite interval width At, is assumed even for handling iso- 
thermal phase change problems. As a consequence of these 
approximation techniques, a correct heat balance is pre- 
served by avoiding the possibility of missing the peak values. 

_F Author to whom correspondence should be addressed. 

and much of the past work involves interpolation of 
enthalpy. 

H = 
s 

PC(O) dU, 

H = N,H,, rather than the direct evaluation of the heat 
capacity. 

In the fictitious heat flow or source based methods, the 
effects due to latent heat are introduced directly as a non- 
linear source related term. Most of these methods involve 
some sort of monitoring of the heat Row to represent the 
release of latent heat. Numerous strategies have been 
attempted by various researchers (see Ralph and Bathe [4]. 
Roose and Storrer [5], and references thereof) to include 
effective updating procedures for computing the resulting 
liquid fraction field from known temperature fields and the 
like. Although applicable to isothermal and mushy phase 
change problems, it has been observed to yield accurate 
freezing front locations with fairly coarse (large) sizes for 
mesh and large time steps with the exception for computing 
temperature fields which require much refined values. 

Although enthalpy based methods have been emphasized 
for phase change problems [6], and literature regarding their 
use in conjunction with the finite element method is limited 
(see refs. [7--91) in comparison to the apparent heat capacity 
methods, more recently. increased attention has been 
directed to demonslrate the effectiveness of enthalpy based 
representations for general phase change problems [I]. The 
distinguishing differences in the various formulations rel- 
evant to enthalpy-based methods lie in the representation of 
the resulting governing equation either in terms of the total 
enthalpy and therein employing the discretization process. 
or, in employing the discretization process firstly in the form 
represented by 

fi-(k$,,),, = e (1) 

and later introducing the representative relations for the 
temperature 0 in terms of the enthalpy H. In this paper it 
is this later form of representation in which we introduce 
modifications to our previous efforts to achieve certain added 
advantages for applicability to a class of isothermal phase 
change situations. 

y-FAMILY OF REPRESENTATIONS 

For handling general phase change problems, we first rep- 
resent the governing equations in conservation form as 

H, = 43.) + P (x,. t) E .Qx(o, T) (2) 

subjected to appropriate boundary and initial conditions. 
Following our previous effort [I], introducing the approxi- 

mations 
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FIG. I. Comparative freezing front locations and temperature histories for solidification in a semi-infinite 
slab of liquid. (a) Explicit: (b) implicit; (c) explicit ; (d) implicit. 

H,(s,, I) = NH (3a) 

qp = Nq (3b) 

the resulting discretized ftnite element equations for the y- 
family of enthaipy representations is obtained following 
Tamma and Namburu [I] as 

C = EAt N;N,dC& (63) 
P 

and 0 G ?J < 1.0, where y is a stability rdated parameter. 
The above y-family of architectures are representative of 

the generalized trapezoidal family of schemes. However, they 
are shown in a different perspective and provide different 
physical i~te~retat~on and various added advantages to sig- 
nitkantty enhance the overall effectiveness for general phase 
change probtems (both isothermal and mushy) in com- 
parison to the traditional representations customarily used 
employing one-step methods [I]. Some of the significant 

attractive features include : independence of element inle- 
grals from material thermophysical properties ; permit com- 
putation of clement integrals only once during the entire 
analysis; provide effective introduction of genera! boundary 
conditions in a direct and naturat manner; etc. Technical 
details are available elsewhere due to Tamma and Namburu 
[I] and hence are not discussed here. 

Since enthalpy is a natural and integral part of the archi- 
tecture, once the incremental enthalpies are evaluated, we 
propose an updating approach for evaluating the tem- 
peratures via 

(7) 

although other analogous apprcaches are also permissible. 

PRESENT MODlFlCATlONS WITH 
PARTtCULAR REFERENCE TO 

ISOTHERMAL PHASE CHANGE PRUBlEMS 

We next purposely focus attention on a particular form of 
simplified modifications with some added benefits although 
restricted to a class of Isothermal phase change problems 
because of the particular tetnperaturc--enthalW nAtions 
employed, In particular. we herein retain all of the significant 
attractive features of the original y-family of representations 
and therein additionally demonstrate some added advan- 
tages as described subsequently. 

The fundamental modifications we introduce lie in the 
handling of the heat ffux vector q”*’ (which is normail); 
evaluated employing Fourier’s law and finite element 
approximations) appearing. in the discreti7ed rqrlationc 
(equations (6)). 



Technical Notes 4495 

t’ 
s.0 

T--1.0 

INSUIATED I-“ T l 0.3 

P-I.0 

1.0 INSULAmo 5.0 

IL- 1.0 p so.25 

pc- I.0 T =o.o 

X 

(a) 

0,3 
0.2 

0, I 
0.0 

-0.1 
-0.2 
-0.3 
-0.4 
-0.5 

-0.6 
-0.7 
-0.0 
-0.9 
-1.0 

0.00 0.02 0.04 0.06 0808 0.10 0,lZ 0.14 0.16 0,lB 0.20 

TIE 
(b) 

FIG. 2. Solidification of a circular region. (a) Description of model and data; (b) comparative explicit and 
implicit temperature histories (x = 0.98, y = 1 .O). 

For the class of isothermal phase change problems con- The added advantages via the present moditications for 
sidered, the temperature 0 and enthalpy H are related as isothermal phase change problems include the following con- 
follows : siderations : 

where U,, is the melting/freezing temperature. 
The heat lhrx vector employing Fourier’s law is given as 

q = -k$ ,I‘ (9) 

Instead of introducing the temperature interpolation 
approximations in the above, we propose to employ the 
temperatureeenthalpy relations by equation (8), where the 
tiuite element approximations for enthalpy are represented 
as 

H, = NH. (IO) 

For isothermal phase change problems, equations (4) are 
solved for the enthalpy first. Therein, temperatures are 
merely obtained as a result of a simple post-processing oper- 
ation by employing the temperatureeenthalpy relations, 
equations (8). shown previously. 

permits larger time steps for the present implicit counter- 
part : 

obviates the need to introduce an artificial finite width 
interval ‘All’ for isothermal phase change situations ; 

eliminates the need for averaging approximdtio~s for the 
effective heat capacity ; 

enables a good approximation for the location of the phase 
front. 

All of the other distinguishing characteristics of the y- 
family of representations outlined previousfy and described 
elsewhere by Tamma and Namburu [l] for general solidi- 
fication problems are retained. 

In comparison to ref. ]I]. a disadvantage by introducing 
the present modi~cations is that for the imphcit solution 
procedure. the resulting Jacobian matrix involved with the 
Newton-Rdphson procedure is unsymmetrical. 

ILLUSTRATIVE EXAMPLES 

Test case 1 : solidification of a semi-injinite slab of’ liquid 
The geometry and relevant data for the model is depicted 
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Frci. 3. Solidification of a circular region. (a) Temperature contours, / = 0.1 s: (h) temperature contours. 
f = 0.2 s; (c) enthalpy contours. / = 0.1 s: (d) enthalpy contours, f = 0.2 s. 

in Fig. l(a). As shown. the uniform infinite slab of liquid 
rnitially at zero temperature, is subjected to a temperature of 
-45’ F at the ieft end and is held constant. This test model 
examines the solidification of a semi-intinite slab of liquid 
and an analytical solution exists [I, IO]. 

The problem is modeled employing four-noded bilinear 
elements (40 elements). The problem is analyzed using the 
explicit (7 = 0) and the implicit (+; = 1) representations. A 
lumped capacitance matrix is employed for all calculations. 
The comparative locations of the phase front and tem- 
perature histories at a location .Y = I are shown in Figs. 
I(a)-(d). The present simulations agree very well with the 
analytical results. The computational ratio for the present 
explicit to the implicit forms is I : I .53. 

This test model proposes a two dimensional circular region 
with a circular hole which is initially at rz = 0.3, while the 
exposed edges are maintained at 7’ = - 1 .O. Due to symmetry 
considerations, only a quarter of the region is modeled and 
a description of the problem is shown in Fig. 2(a). The 
problem is modeled employing 100 four-noded bilinear 
elements. The comparative temperature histories are shown 
for the explicit and the implicit forms in Fig. 2(b) for a typical 
point located at x = 0.98 and J = 1.0. Typical temperature 
contours at time 0.1 and 0.2 s are shown in Figs. 3(a),(b) for 
the explicit form. Unlike the previous representations, Figs. 
3(c),(d) show contours of enthalpies for the implicit form at 
time 0.1 and 0.2 s respectively. Typical locations of the phase 
front are shown in the above contour plots (Figs. 3(c),(d)) 
at time 0.1 and 0.2 s respectively. The computational ratio 
for the explicit to the implicit forms is 1 : 1.32. 

CONCLUDING REMARKS 

An effective modeling/analysis approach based on a gener- 
aliTed y-family of representations with emphasis on rep- 

resentative enthalpy architectures was described with special 
reference to a class of isothermal phase change applications. 
In particular, introducing minor modi~cations, the present 
form of representations obviate the need to introduce a finite 
interval width. thereby overcoming any type of approxi- 
mations for representing strict isothermal phase change situ- 
ations. Averaging approximations are also not involved and 
larger time steps are permissible for the time integrations. The 
present explicit form is also clearly superior to the present 
implicit form. In comparison to other analogous finite 
element approaches traditionally followed for similar proh- 
lems, the present explicit and implicit formulations should 
compete extremely well (based on our previous comparative 
research efforts [l] for general phase change problems). The 
overall results indicate good agreement and the proposed 
formulations provide an effective methodology for a class of 
isothermal phase change problems. 

Ackrtoak~ciq~mPnts--This research is supported in part, by 
NASA-Langley Research Center, (NAG-l-808), Hampton. 
Virginia. Acknowledgement is also due to the Minnesota 
Supercomputer Institute, Minneapolis, Minnesota. Thanks 
are also due to the University of Minnesota, Army High 
Performance Computing Research Center (AHPCRC) for 
related support. 

REFERENCES 

K. K. Tamma and R. R. Namburu, Recent advances. 
trends and new perspectives via enthalpy-based finite 
element formulations for applications to solidification 
problems, In/. J. Num. Meths. Engqy30,803-820 (1990). 
G. Comini, S. Del Guidice, R. W. Lewis and 0. C. 
Zienkiewicz. Finite element solution of non-linear heat 
conduction problems with special reference to phase 
change, Int. J. Num. Meths. Engng 8, 613-624 (1974). 
K. Morgan, R. W. Lewis and 0. C. Zienkiewicz, An 



improved algorithm for heat conduction problems with method of solution of phase change problem based on 
ohase chanee. Int. J. 
i1978). v 

Ivzu72. M&s. Engrrg I2,1191-I I95 enthalpy diffusion. In ~u~erjcal Methods in T~er~ui 
F$ob~e~~, Proc. Conf (Edited by R. W. Lewis and 

Technical Notes 4497 

W. D. Ralph, III and K. J. Bathe, An efficient algorithm K. Morgan), pp. 90-100. University of Wales, Swansea 
for analysis of non-linear heat transfer with phase (i989). 
change, Inr. J. Num. Meths. Engng 18, 119-134 (1982). 8. R. E. White, An enthalpy formulation of the Stefan 
J. Roose and 0. Storrer, Modelization of phase changes problem, SIAM J. Num. Anal. 19,1129-l 157 (1982). 
by fictitious heat flow, Int. J. Num. Meths. Engng 20, 9. R. E. White, A numerical solution of the enthalpy for- 
217-225 (1984). mulation of the Stefan problem, SIAM J. Num. Anal. 
N. Shamsundar and E. M. Sparrow, Analysis of multi- 19, 11581172 (1982). 
dimensional conduction phase change via the enthalpy 10. H. Budhia and F. Kreith, Heat transfer with melting or 
model, ASMEJ. Heut Trunsfer97,333-340 (1975). freezing in wedge, Int. J. Heat Mass Transfer 16, 195- 
M. J. Mundin and M. Fortes, Accurate finite element 211 (1973). 

hr. .J. Hral MUSA Trarxfker. Vol. 36. No. IS, PP. 4497-4499, 1993 0017-93 IO/93 t.HJo+ 0.00 
Printed in Great Bniain ,Cs 1993 Pergamon Press Ltd 

Steady state multiplicity in boiling fluid pipe flow 

I. NAoT,t D. R. LEWIN~$ and S. J. WAJC$ 

t Department of Chemical Engineering, Technion, Haifa 32000, Israel 
$ IMI-Institute for Research and Development, PO Box 10140, Haifa Bay, Israel 

(Received 24 May 1993) 

1. INTRODUCTION 

THE PROBLEM considered is that of a pipe in which flows a 
fluid that may evaporate. A uniform heat Rux is supplied 
along the pipe and is independent of the flow rate inside 
the pipe. This may be the case in nuclear reactor cores, in 
electrically heated tubes or as an approximation in cases 
where the pipe is heated by radiation by high temperature 
flames. The fluid enters the pipe as a sub-cooled liquid and 
exits the pipe as a liquid-vapor mixture. An increase in the 
mass fiow rate causes both an increase in the frictional pres- 
sure drop and a decrease in the length of the two-phase zone, 
and in the exit vapor fraction, causing a smaller change 
in momentum flux. These conflicting effects result in the 
possibility of a local maximum in the variation of pressure 
drop with flow rate, as will be shown later. 

2. ANALYTICAL MODEL 

In order to understand the physics of the phenomenon, 
we shall first develop a simplified approximation, for which 
an analytical solution can be derived. This will then be com- 
pared with a numerical simulation of the system described. 
The assumptions of the model are : 

(a) Liquid and vapor properties are constants (AHrv, 
AFL,, FL* C,,). 

(b) The pressure drop is small and therefore the saturation 
temperature, T,, is conslant. 

(c) The liquid viscosity is constant and the two-phase 
mixture viscosity is equal to the liquid viscosity. 

(d) The flow is turbulent and the friction factor is 
described by the Blasius approximation : _fr = 0.079 Rem”.25. 

(e) The two-phase flow is described by the homogeneous 
fiow model. 

ff) The heat input to the pipe, 4%“. is uniform. 
(g) The flow is one dimensional (no radial changes). 
(h) Axial heat conduction is neglected. 
(i) In the two-phase zone, the fluid is in equilibrium at 

all points. 
(j) Steady state conditions are assumed throughout. 

We note that assumptions (a)-(c) above do not apply to the 
--__ I_____ 
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numerical simulations brought in Section 3. The two model 
equations are : 

Energy balance : 

dfi 
m x = 4,. 

In the liquid zone : 

dH dl- 
z = CC,, 

In the two-phase zone : 

.g = AH, !?$? 

(1) 

(lb) 

Momentum balance : 

dP dP, dP, 
;i7=dl+dl. (2) 

Here, the terms on the right hand side are the frictional 
pressure gradient : 

and the pressure gradient due to acceleration : 

dP -! - 
dl - -&u’)). 

(3) 

(4) 

These can be expressed in terms of m: pu = d = i/A ; 
PU’ = c2ip = ti2/A2* (V> ; Re = 4ti/nDp. In the two-phase 
region : 

and 

d(V) -= 
dl 

AV do 
Ly dl 

From (1) and (lb) : 

d<x) Y,n 

dl rirdH,v’ 

Substituting into (4) gives : 


